Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 160: 274-296, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36709531

RESUMO

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of (1) Continuous Learning, (2) Transfer and Adaptation, and (3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.


Assuntos
Educação Continuada , Aprendizado de Máquina
2.
Front Neurosci ; 14: 928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041754

RESUMO

A continual learning system requires the ability to dynamically adapt and generalize to new tasks with access to only a few samples. In the central nervous system, across species, it is observed that continual and dynamic behavior in learning is an active result of a mechanism known as neuromodulation. Therefore, in this work, neuromodulatory plasticity is embedded with dynamic learning architectures as a first step toward realizing power and area efficient few shot learning systems. An inbuilt modulatory unit regulates learning based on the context and internal state of the system. This renders the system an ability to self modify its weights. In one of the proposed architectures, ModNet, a modulatory layer is introduced in a random projection framework. ModNet's learning capabilities are enhanced by integrating attention along with compartmentalized plasticity mechanisms. Moreover, to explore modulatory mechanisms in conjunction with backpropagation in deeper networks, a modulatory trace learning rule is introduced. The proposed learning rule, uses a time dependent trace to modify the synaptic connections as a function of ongoing states and activations. The trace itself is updated via simple plasticity rules thus reducing the demand on resources. The proposed ModNet and learning rules demonstrate the ability to learn from few samples, train quickly, and perform few-shot image classification in a computationally efficient manner. The simple ModNet and the compartmentalized ModNet architecture learn benchmark image classification tasks in just 2 epochs. The network with modulatory trace achieves an average accuracy of 98.8%±1.16 on the omniglot dataset for five-way one-shot image classification task while requiring 20x fewer trainable parameters in comparison to other state of the art models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...